Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

1-(2-Hydroxy-4,6-dimethylphenyl)ethanone

Lidia Armelao et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

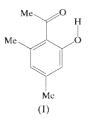
1-(2-Hydroxy-4,6-dimethylphenyl)ethanone

Lidia Armelao,^a Giovanni Depaoli^a and Alessandro Dolmella^b*

^aCentro di Studio sulla Stabilità e Reattività di Composti di Coordinazione, CNR, Via Marzolo 1, 35131 Padova, Italy, and ^bDipartimento di Scienze Farmaceutiche, Via Marzolo 5, 35131 Padova, Italy

Correspondence e-mail: dolmella@dsfarm.unipd.it

Received 25 April 2000 Accepted 28 April 2000


Data validation number: IUC0000135

In the crystal of the title compound, $C_{10}H_{12}O_2$, there are two symmetry-independent molecules, which are essentially superimposable. Each molecule exhibits an intramolecular O– $H \cdots O$ hydrogen bond, with $O \cdots O$ separations of 2.483 (4) and 2.468 (4) Å.

Comment

Bismuth(III) β -diketonates are commonly used as precursor compounds in the synthesis of bismuth oxide-based materials (Fujiwara *et al.*, 1999; Ling, 1999; Barreca *et al.*, 1998; Boivin & Mairesse, 1998). For example, Bi(dpm)₃ (dpmH is 2,2,6,6tetramethyl-3,5-heptanedione) has already been adopted as a source for the preparation of Bi₂O₃ films *via* CVD because of its high volatility and monomeric structure.

These compounds are also very attractive precursors in the sol-gel processing of materials. In this case, the organic fraction of the starting compounds should be kept at a minimum to avoid contamination of the final product. Accordingly, the synthesis of Bi(acac)₃ (acacH is 2,4-pentanedione) was planned following the same procedure used for the preparation of Bi(dpm)₃, *i.e.* starting from Bi(C₆H₅)₃ and acetyl-acetone. The reaction yielded the air-stable title compound, (I), which was fully characterized by IR and X-ray diffraction.

The asymmetric unit comprises two well separated perfectly superimposable molecules (r.m.s. of only 0.05 Å when the fitting is performed on the 12 non-H atoms). In each molecule (strictly planar, apart from the methyl H atoms), an effective

intramolecular O–H···O hydrogen bond is present. It recalls those present in three substituted 2-hydroxy-4,6-dimethylchalcones (Satish Goud *et al.*, 1995); in particular, the angle at hydrogen is 146° .

Experimental

Anhydrous white solid $Bi(C_6H_5)_3$ (Aldrich) was added to colourless liquid acetylacetone (Aldrich) and the mixture warmed for 10 h at 403 K. The product, obtained by the reaction

$$2C_5H_8O_2 \rightarrow C_{10}H_{12}O_2 + 2H_2O_3$$

?tpbgc=^st_head3_bgcolour]>was recrystallized from benzene.

Crystal data

,	
$C_{10}H_{12}O_2$	Z = 4
$M_r = 164.20$	$D_x = 1.234 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.431 (4) Å	Cell parameters from 50
b = 7.604 (3) Å	reflections
c = 16.007 (6) Å	$\theta = 8.1 - 13.3^{\circ}$
$\alpha = 93.61 \ (3)^{\circ}$	$\mu = 0.085 \text{ mm}^{-1}$
$\beta = 95.50 \ (4)^{\circ}$	T = 293 (2) K
$\gamma = 99.89 \ (4)^{\circ}$	Parallelepiped, pale yellow
$V = 884.0 (7) \text{ Å}^3$	$0.30 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Nicolet R3m/V diffractometer	$h = 0 \rightarrow 8$
ω –2 θ scans	$k = -8 \rightarrow 8$
2932 measured reflections	$l = -19 \rightarrow 19$
2917 independent reflections	2 standard reflections
1334 reflections with $I > 2\sigma(I)$	every 150 reflections
$R_{\rm int} = 0.004$	intensity decay: none
$\theta_{\rm max} = 25.57^{\circ}$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1115P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.049$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.147$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.913	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
2917 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
218 parameters	Extinction correction: SHELXL93
H-atom parameters constrained	Extinction coefficient: 0.0725 (89)

H atoms were refined using a riding model; methyl and hydroxyl protons were refined with 1.5 times, and for the phenyl H atoms with 1.2 times, the $U_{\rm eq}$ value of the parent atom.

Data collection, cell refinement and data reduction: *P3/P4-PC Diffractometer Control Program* (Siemens, 1991) program(s) used to solve structure: *SHELXTL/PC* (Sheldrick, 1994); program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993); software used to prepare material for publication: *SHELXTL/PC*.

References

Barreca, D., Rizzi, D. A. & Tondello, E. (1998). *Thin Solid Films*, **333**, 35–40. Boivin, J. C. & Mairesse, G. (1998). *Chem. Mater.* **10**, 2870–2888.

- Fujiwara, S., Suzuki, T., Sugimoto, N., Kanbara, H. & Hirao, K. (1999). J. Non-Cryst. Solids, 259, 116–120.
- Ling, C. D. (1999). J. Solid State Chem. 148, 380–405.
- Satish Goud, B., Panneerselvam, K., Zacharias, D. E. & Desiraju, G. R. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 325–330.
- Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
- Sheldrick, G. M. (1994). *SHELXTL/PC*. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1991). Nicolet–Siemens P3/P4-PC Diffractometer Control Program. Version 4.27. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.